Answer Key 10/06/25

Thermochemistry

A chemical reaction requires energy

What is the first law of thermodynamics?

Energy can be converted from one form to another, + it is neither created nor destroyed

What is an open system, and what is a closed system?

Ex " cup w/ no lid

closed system: only exchange heat w/ surroundings; not mass

open System: Exchanges heat I mass Surroundings = Everything else

What is the SI unit for energy?

$$15=1 \frac{km \cdot m^2}{s^2}$$

What are the three parts of thermodynamic quantities?

- 1) Number
- 2) Unit

Exo cup w/ Vi &

What is the equation for change in internal energy in reference to the system and surroundings?

$$\Delta E = q + w$$

$$\Delta E = change in energy$$

$$q = heat$$

$$w = work$$

Table 5.1 Sign Conventions for q, w, and ΔE

For q

+ means system gams heat

- means system loses heat

For w

+ means work done on system

- means work done by system

For ΔE

+ means net gain of energy by system

means net loss of energy by system

The system loses 1150J of heat, and the surroundings do 480J of work on the system. What is the change in internal energy of the system?

DE= g+W

AE=?

9=-11505

w= + 480;

AE= (-11503) + (4803)

(fants)

1-6703

What is the change in internal energy if the system absorbs 140J of heat from the surroundings and does 85J of work on the surroundings?

DE=j+W

DE=?

9=+1403

w=-853

AE = (+1405) + (-855)

= 55]

Internal energy is a state function

Stale function = depends on the Stale of matter

Heat and work are **not** state functions

What is enthalpy?

(

Heat change of a rxn e constant pressure

What is heat of reaction or enthalpy change? ΔH

Measure of the amount of heat that flows into (absorber) or out of (gain of) a system as a rxn takes place

AH>0

What does endothermic mean?

Absorbs heat

- system jets warmer t

Surroundigs get cooler

- Bonds breaking

Products

Reactants

The Progress

Products are less stable

What does exothermic mean? ムH LO

Release heat - D

- ystem gets cooler

+ surroundings get warmer

- Bond forming

reactors products

more stable than reactants

Is it endothermic or exothermic? Ice cube melts and butane is combusted to give complete

combustion.

Ice cube melts = endothermic

System = ice calse

Tice surroundigs = head

+ DH

melt = solid a liquid

- has to get warmer

Butane compasted = exothermic System = butane

1 9

butane

L & beat

combusted = release enerst

What are all the ways to calculate enthalpy?

1) stoichiometry

3) Hess' Law

5) Bond enthal P7

2) Calorimetry

4) Heats of formation

What is the equation for enthalpy of reaction?

H= enthal py

AHrxn = H products - H reachants

Mn= reaction

Sto ichiometry

Calculate the quantity of heat released when 5.00g of H₂O_a(1) decomposes at constant pressure.

$$2H_2O_2(1) \longrightarrow 2H_2O(1) + O_2(g)$$

Stoichiometry

Determine what mass of NO can be made if 558 kJ of energy are supplied given the following chemical equation: •

$$N_2(g) + O_2(g) \longrightarrow 2NO(g)$$

$$\Delta H = 180.6 \text{ kJ}$$

What is calorimetry?

measurement of heat flow

What is the equation for specific heat capacity?
$$C = Specific heat for that substance $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = M \times C \times \Delta T$ $S = heat (S)$ $S = heat ($$$

How much heat is needed to warm 250g of water from 22°C to 98°C? Specific heat for water is

4.184J/g °C. What is the molar heat capacity of water?

4.184J/g °C. What is the molar heat capacity of water: $V = MC\Delta T$ $V = MC\Delta T$