Record

Answer 164

Exam 2 Test Prep

even in composition

Solutions are homogenous mixtures

Determine if the following are a strong, weak, or nonelectrolyte:

NH3 Weak C2H5OH NOO CaCl2 Strong

No Cacl2 Strong

Cacl2 Strong

Cacl2 Strong

Covalent

Covalent

If salt is mixed with water, what is the solvent, and what is the solute?

Solute = sait sait dissolves in water

Solvent = water

Does the equation yield a precipitate? If so, what compound is the precipitate?

Write the net ionic equation for BaI₂ and Na₂SO₄ if it is a precipitation reaction. What are the spectator ions in this reaction?

Net: Ba2+ (a) + SO42- (4) -> BaSO4 (5)

Spectator ions: 2I CILS + 2Nat (96)

What is the net ionic equation for aqueous nitric acid and aqueous strontium hydroxide?

Molecular: 2 HNO3 CAD + Sr (OH) 2 CAD -> Sr (NOS) 2 CAD + 2 H2O CAD

complete: 2Htcys+ 2NO3 CALS + Sr CALS + 20H CAD -> Sr 2+ (AL) + 2NO3 CALS + 2H2O CA)

Net: 2H+ CAD+ 20H- CADS - 2 H20 CMS

\$ H+ (a) + OH (a) > H20(4)

moles

How many exams of CoI₂ are present in 0.200L of a 0.400M solution of CoI₂?

$$\frac{0.400\,\text{mol}}{k} \times 0.200k = \begin{bmatrix} 0.0800\,\text{mol} & \text{CoI}_2 \\ 0.00000^{-2} & \text{mol} & \text{CoI}_2 \end{bmatrix}$$

What is the concentration of sodium sulfide in a solution by diluting 50.0mL of a 0.874M solution of sodium sulfide to a total volume of 50.0mL?

$$M_1N_1 = M_2N_2$$

$$(50.0 \text{ mL})(0.8721\text{ M}) = (50.0 \text{ mL})(M_2)$$

$$= 0.874 \text{ M} N_{0.2}S$$

$$M_1N_1 = M_2N_2$$

$$N_2 = M_1N_1$$

$$= M_2N_2$$

$$M_2 = M_1N_1$$

$$= M_2N_2$$

$$M_2 = M_1N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_1$$

$$M_2 = M_2N_2$$

$$M_2 = M_2N_2$$

$$M_3 = M_2N_1$$

$$M_3 = M_3$$

$$M_3$$

If it takes 50 mL of 0.5 M KOH solution to completely neutralize 125 mL of sulfuric acid solution (H₂SO₄), what is the concentration of the H₂SO₄ solution?

solution (H₂SO₄), what is the concentration of the H₂SO₄ solution?

$$2 \text{ KOH } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ KOH } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ KOH } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ KOH } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_1S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2O(2S)$$

$$2 \text{ Mod } (a_1S) + H_2SO_4 (a_2S) \rightarrow K_2SO_4(a_2S) + 2 H_2SO_4(a_2S) + 2 H_2SO_4(a_$$

Can a reaction happen between potassium and (II) chloride? Hint: look at the activity series.

Energy is the capacity to do work

Heat and work are not state functions

What is the change in internal energy of a system that releases 2500J of heat and does 7655J of work on the surroundings? $\Delta = 1 + \omega$

$$\Delta E = ?$$
 $f = -25005$

$$= -76555$$

$$= -101555$$

Calculate the specific heat capacity of a metal if a 17.0 g sample requires 481 J to change the temperature of the metal from 25.0 °C to 67.0 °C?

$$f = 4815$$
 $L = 7.05$
 $L = 7$
 $\Delta T = 67.0^{\circ}C - 25.0^{\circ}C = 42.0^{\circ}C$
 $L = 7.05$
 $L = 7.05$

What is the enthalpy of reaction for

$$2SO_2(g) + O_2(g) - 2SO_3(g)$$

given

$$|CCCP| 2S(s) + 3O_2(g) \longrightarrow 2SO_3(g) \qquad \Delta H^\circ = -790kJ$$
 $|CCCP| 2S(s) + 3O_2(g) \longrightarrow SO_2(g) \qquad \Delta H^\circ = -297kJ \qquad \lambda \Delta H^\circ = -190kJ \qquad \lambda \Delta H^\circ = -1$

What is the ΔH°_{rxn} in kJ for the following reaction?

$$4NH_{3}(g) + 5O_{2}(g) - 4NO(g) + 6H_{2}O(1)$$

$$products - reactants$$

$$(4 \times 10 \times 5) + (6 \times -266 \times 5) - (4 \times -46 \times 5) + (6)$$

$$-1356 - -184$$

= - 1172

Substance	ΔH°f (kJ/mol)
H ₂ O (l)	-286
NO (g)	90
NO ₂ (g)	34
HNO3 (aq)	-207
NH3 (8)	-46

Entharpore is the heat change of a reaction at a constant pressure and is an extensive property

Standard conditions (25°C and 1.00atm pressure)

What is the difference between endothermic and exothermic?
Endothermic = Absorbs energy; bond breaking
Exothermic = Releases energy ; bond forms
12 p
Endo Exo
When considering bond enthalpy, is it harder to break a single bond or a double bond?
H-C-H (=c + more e - being shared H' H - harder to break c=c, so requires more energy
H H harder to break c=c,50 requires
What is the frequency of electromagnetic radiation that has a wavelength of 2.3 x 10° nm?
C-N C=3,00 x108 m/c
$= \frac{10^{9} \text{ nm}}{2.3 \text{ m}} = \frac{1}{2.3 \text{ m}} = \frac{1.3 \times 10^{8} \text{ s}^{-1}}{10^{9} \text{ nm}}$
1.9 1010
7 - 113 × 108 = 1
= 2.3m
Calculate the energy of blue light that has a wavelength of 400.nm
E=hu c=nu E= (6.626x10-34 1/s) (3.00 x108,
$\frac{400 \text{ nm}}{10^9 \text{ nm}} = 4 \times 10^{-7} \text{ m}$
= 4 X10 m
= 4.97 x10-19 =
What shape are s orbitals? What shape are p orbitals?
5 orbitals = spheres P orbitals = dumbell/houglass
0
If $n = 1$, then I can only be
in $i=1$, then I can only be $i=1$ in $i=1$.
If $n = 4$, and $l = 3$, then m_l can be $\frac{-3}{2}, \frac{-2}{2}, \frac{-1}{2}, \frac{0}{2}, \frac{1}{2}, \frac{3}{2}$
-3 -> +3

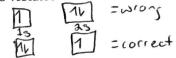
l=m,

$$h = period \pm 1$$
 $l = period \pm 1$
 $p = 1$
 $p = 1$
 $p = 2$
 $p = 3$

What would be the quantum numbers for n, l, m_l , m_s if you are given chlorine?

$$n=3$$
 $l=1$

you are given chlorine?
$$N=3$$
 $l=1$ $M_1=0$ $M_5=-1/2$


Can a subshell have two up arrows? If not, what rule does this violate?

No violates Paul Exclusion -Arrows must be in opposite

direction >

Can a 2s subshell be filled before 1s subshell? If not, what rule does this violate?

No violates Author - Must fill Is before going

Can 2 arrows fill the first orbital in a 2p subshell before having one arrow in each orbital first? If

not, which rule does this violate?

No violates Hund's rule - Need 1 arrow in each orbital before doubling up

What is the electron configuration for nitrogen?

What is the electron configuration for Mg^{2+} ?

EARL 1e-

What is the condensed electron configuration for S-?

What is the condensed electron configuration for Bi?

What is the condensed electron configuration for copper, chromium, and silver?